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Abstract: - This paper is devoted to introduce analytic solutions by Differential Transform Method-Pade 
approximants with theoretical study for the problem of the hydromagnetic flow due to a permeable stretching 
surface embedded in a porous medium in the presence of transverse magnetic field.  The governing momentum 
equation which is a nonlinear partial differential equation is reduced into a nonlinear ordinary differential 
equation by using similarity transformation and then solved numerically by DTM-Pade. The accuracy of 
present method is tested by numerical shooting method and the results are found to be in an excellent 
agreement. Numerical results are displayed by means of graphs. The effect of porous parameter, magnetic 
parameter and suction/injection parameter on skin friction and velocity are thoroughly studied. 
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1 Introduction 
The hydrodynamic flow over a continuously 
stretching surface is an important problem in many 
engineering processes with applications in 
industries such as polymer extrusion, wire and fiber 
coating, melt-spinning, hot rolling, glass-fiber 
production, petroleum production, exotic lubricants 
and suspension solutions. Much work on the 
boundary layer Newtonian fluids has been carried 
out both experimentally and theoretically. An 
analytical solution to the boundary layer equations 
for the steady two dimensional flow due to a 
stretching surface in a quiescent incompressible 
fluid taking into account the case of a linear 
stretching surface was analyzed by crane [1]. 
Thereafter, many authors [2-8] has been extended 
the problem of Newtonian flow past a stretching 
surface in various ways. 
 In recent years, the study of fluid flow 
through porous media has received considerable 
attention because of numerous applications in 
various engineering disciplines, such as transfer 
ground water pollution, oil recovery processes, 
cooling of electronic components, food processing, 
etc., Hooper et al. [9] has analyzed the effects of 
surface injection or suction on mixed convection 
from a vertical plate in porous media. The effect of 
surface mass transfer on mixed convection in non-

Newtonian fluids in porous media was examined 
by Taker [10]. 
 The study of hydromagnetic viscous 
incompressible flow has many important 
engineering and industrial applications in devices 
such as MHD accelerators, the design of heat 
exchangers, the cooling of reactors, power 
generation. In MHD, the problem of stagnation 
point flow of electrically conducting fluids in the 
presence of large transverse magnetic field 
strengths was studied by Ariel [11]. 
 In general no analytical solution is 
available to solve nonlinear differential equation 
problems and usually these are solved numerically 
subject to boundary conditions, are of which is 
prescribed at infinity. The differential transform 
method played an important role in recent 
researchers and applied for solving many of 
nonlinear problems in science and engineering [12-
17]. This method builds for differential equations 
an analytical solution in the form of a power series. 
In addition, power series are not very much useful 
for large values of η , say ∞→η . It is now well 
known that Pade approximation [18-19] have the 
advantage of manipulating the polynomial 
approximation into rational functions of 
polynomials. It is therefore essential to 
combination of the series solution, obtained by the 
DTM with the Pade approximation to provide an 
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effective tool to handle boundary value problems at 
infinity domains. The first successful application of 
the DTM to boundary layer equations was 
presented by Rashidi [20].  
 Motivated to the above work, the present 
paper considered the nonlinear steady two 
dimensional laminar MHD flow of an electrically 
conductivity viscous fluid against a permeable 
stretching surface through a porous media. A 
transverse magnetic field is applied and the fluid is 
assumed to have a constant properties. The main 
aim of the present study is to find the approximate 
analytic solutions by the combinations of DTM and 
Pade approximants. Numerical results are displayed 
graphically by means of graphs. The effects of 
porous parameter, magnetic parameter and 
suction/injection parameter on velocity and skin 
friction are thoroughly discussed. 
 
 
2 Formulation of the Problem 
Let us consider a steady laminar boundary layer 
flow of an incompressible electrically conducting 
fluid over a permeable stretching surface embedded 
in a porous medium under a influence of a constant 

transverse magnetic field 0B . The origin is located 
at a slit, through which the sheet is drawn through 
the fluid medium. The x-axis is chosen along the 
sheet and y-axis is taken normal to it. Assume that 
the velocity of the continuous stretching surface 

axU =  where x  is the coordinate measured along 
the stretching surface and )0>a  is a constant for 
a stretching. It is also assumed that the surface to 

be porous and the suction )0( >wV /injection 

( )0<wV  is taken into consideration. The fluid 
properties are assumed to be constant.  
 Under the usual boundary layer 
approximations for the Newtonian fluid, the steady 
two dimensional laminar MHD boundary layer 
equations can be written as  
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where u and v are the velocity components in the x 
and y directions, respectively, k is the permeability 

of the porous medium, eµ  is the dynamic viscosity 
and ρ is the density of the fluid. 
The corresponding boundary conditions are 

0, =−== yatvvUu w              (3) 
∞→→ yasu ,0  

Introduce the following nondimensional variables  

)(),(', ηηη favvaxfu
v
ay −===           (4) 

Where η  is the similarity variable, )(ηf is 
dimensional stream function and ν is the kinematic 
viscosity. 
 Using Eq. (4), Eq. (1) is identically 
satisfied and Eq. (2) becomes 

0'''''''' 2 =−−+− fMfffff β                        (5) 
with the boundary conditions 

0,1', === ηatfSf               (6) 
∞→→ ηasf ,0'  

Where kae ρµβ = is the porous parameter, 

( ) 0>= avvS w is suction or 

( ) 0<= avvS w is injection velocity parameter 

and aBM ρσ 2
0= is the magnetic parameter. 

 
 
3 Differential Transformation 
Method 
Consider a function )(xu  which is analytic in a 

domain T  and let 0xx =  represent any point in 
T . The function )(xu is then represented by a 

power series whose center is located at 0x . The 
differential transform of the function )(xu  is given 
by 
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where )(xu is the original function and )(kU  is the 
transformed function. The inverse transformation is 
defined as follows 
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Combining Eqs. (7) and (8), we get 
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Inspection of Eq. (9) indicates that the concept 
of differential transform is derived from Taylor 
series expansion. However, this method does not 
evaluate the derivatives symbolically. In actual 
applications, the function )(xu  is expressed by a 
finite series and Eq. (8) can be rewritten as follows: 
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which means that ∑
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negligibly small. Usually, the value of m is decided 
by convergence of the series coefficients. The 
operations for the one-dimensional differential 
transform method are provided in Table 1. 
 
 
4 Analytical Approximations by  
    Means of the DTM-Pade 
The fundamental mathematical operations 
performed by DTM are listed in Table 1. Taking 
the differential transform of Eq. (5), we obtain  
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where F (k) is the differential transform of )(ηf . 
The transformed boundary conditions are 

α=== )2(,1)1(,)0( FFSF                          (12) 
Moreover, substituting Eq. (12) into Eq. (11) and 
by a recursive method we can calculate the values 
of )(kF , where α   is a constant that is computed 
from the boundary condition. For computing their 

values, the problem is solved with initial condition 
Eq. (12) and boundary conditions Eq. (6) are 
applied. The ideal method for enlarging the 
convergence radius of the truncated series solution 
is the Pade approximant i.e. converting the 
polynomial approximation into a ratio of two 
polynomials. The analytical solution obtained by 
the DTM, cannot satisfy boundary conditions at 
infinity. It is therefore essential to combine the 
series solution, obtained by DTM with the Pade 
approximant to provide an effective tool for 
accommodating boundary value problems in 
infinite domains. 
 
 
5 Results and Discussion 
In order to have a clear insight of the physical 
problem, numerical results are displayed with the 
help of Table 2 and graphical illustrations by fixing 
several values for the magnetic parameter M  , 
porous parameter β  and suction/injection 
parameter S on velocity and skin friction. The 
accuracy of present method is tested by numerical 
shooting method and the results are found to be in 
an excellent agreement and comparison between 
the DTM-Pade method and numerical shooting 
method are presented in Table 2

 
Table1: The operators for the one-dimensional differential transform method 
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Fig. 1 presents the dimensionless velocity 
profile )(' ηf for different values of porous 
parameter β  when 0=S and 0=M . It is observed 
that the porous parameter β  increases, velocity 

)(' ηf decreases. Illustrating the fact that the effect 
of porous parameter is to decelerate the velocity.                         

 

Fig. 1. Velocity profiles )(' ηf for various values of 
porous parameterβ . 
 
 Fig. 2 demonstrates the plot of 
dimensionless velocity field for magnetic 
parameter M when 0=S and 1=β . The effect of 
magnetic parameter M is decreasing the velocity. 

 

 

Fig. 2. Velocity profiles )(' ηf for various values of 
magnetic parameter M . 
 
 Dimensionless velocity field )(' ηf for 
suction/blowing parameter 1,0,1−=S when 

1,2 == βM  and 0,2 == βM  are presented 
graphically through Fig. 3 and Fig. 4 respectively. 
It is noticed that for increasing values of 
suction/injection parameter S , the velocity 

)(' ηf decreases which physically conveys the fact 
that the effect of suction/blowing parameter S is to 
reduce the velocity. 

 
Table 2. Values of )0(''f for various values of β,S and M  
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Fig. 3. Velocity profiles )(' ηf for various values of 
suction/blowing parameter S .  
 

 
Fig. 4. Velocity profiles )(' ηf for various values of 
suction/blowing parameter S . 

 
Fig. 5. Velocity profiles )(' ηf for various values of 
suction/injection parameter S . 
 

Fig. 5 demonstrates the dimensionless 
velocity profile )(' ηf for suction/injection 
parameter in the absence of magnetic parameter 
M and absence of porous parameter β . It is seen 
that the effect of suction/blowing parameter is to 
reduce the velocity. 

 

Fig. 6. Variation of )0(''f with β  for various 
values of magnetic parameter M . 

 

Fig. 7. Variation of skin friction with β for various 
values of magnetic parameter M . 

 

Fig. 8. Variation of skin friction with M for various 
values of suction/injection parameter S . 
 

The effect of porous parameter β  on skin 
friction )0(''f for different values of magnetic 
parameter M with 1−=S  and 1=S are shown in 
Fig. 6 and Fig. 7 respectively. It is inferred that the 
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effect of magnetic field M  and the effect of porous 
parameter β  have the similar effect over skin 
friction so as to reduce it. 

Fig. 8 displays the skin friction )0(''f  
against magnetic parameter M for different 
suction/blowing parameter S with 1=β . It is 
observed that the effect of magnetic field is to 
decrease the skin friction. It is also seen that the 
skin friction decreases for 0>S whereas increases 
for 0<S . 

 

Fig. 9. Variation of skin friction with S for various 
values of magnetic parameter M . 

Fig. 9 portrays the skin friction against 
suction/blowing parameter S  for different values 
of magnetic parameter M with porous 
parameter 1=β . Illustrating the fact the effects of 
magnetic parameter and suction/injection parameter 
have the similar effect over skin friction so as to 
reduce it.  

 
 

6 Conclusions 
In this study, the DTM-Pade approximant for the 
problem of steady MHD flow of an electrically 
conductivity viscous fluid against a permeable 
stretching surface through a porous media is 
studied. Based on these studies, we made the 
following conclusions: 

• The effect of magnetic field is to decreases 
the velocity and skin friction. 

• Dimensionless velocity is reduced due to 
the influence of porous parameter. 

• The effect of magnetic field due to porous 
parameter is to decrease the skin friction 
for both the case of suction/injection. 
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